SemiMarkov: An R Package for Parametric Estimation in Multi-State Semi-Markov Models
Agnieszka Król and
Philippe Saint-Pierre
Journal of Statistical Software, 2015, vol. 066, issue i06
Abstract:
Multi-state models provide a relevant tool for studying the observations of a continuoustime process at arbitrary times. Markov models are often considered even if semi-Markov are better adapted in various situations. Such models are still not frequently applied mainly due to lack of available software. We have developed the R package SemiMarkov to fit homogeneous semi-Markov models to longitudinal data. The package performs maximum likelihood estimation in a parametric framework where the distributions of the sojourn times can be chosen between exponential, Weibull or exponentiated Weibull. The package computes and displays the hazard rates of sojourn times and the hazard rates of the semi-Markov process. The effects of covariates can be studied with a Cox proportional hazards model for the sojourn times distributions. The number of covariates and the distribution of sojourn times can be specified for each possible transition providing a great flexibility in a model’s definition. This article presents parametric semi-Markov models and gives a detailed description of the package together with an application to asthma control.
Date: 2015-08-27
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v066i06/v66i06.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... iMarkov_1.4.2.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v066i06/v66i06.R
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:066:i06
DOI: 10.18637/jss.v066.i06
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().