Statistical Disclosure Control for Micro-Data Using the R Package sdcMicro
Matthias Templ,
Alexander Kowarik and
Bernhard Meindl
Journal of Statistical Software, 2015, vol. 067, issue i04
Abstract:
The demand for data from surveys, censuses or registers containing sensible information on people or enterprises has increased significantly over the last years. However, before data can be provided to the public or to researchers, confidentiality has to be respected for any data set possibly containing sensible information about individual units. Confidentiality can be achieved by applying statistical disclosure control (SDC) methods to the data in order to decrease the disclosure risk of data.The R package sdcMicro serves as an easy-to-handle, object-oriented S4 class implementation of SDC methods to evaluate and anonymize confidential micro-data sets. It includes all popular disclosure risk and perturbation methods. The package performs automated recalculation of frequency counts, individual and global risk measures, information loss and data utility statistics after each anonymization step. All methods are highly optimized in terms of computational costs to be able to work with large data sets. Reporting facilities that summarize the anonymization process can also be easily used by practitioners. We describe the package and demonstrate its functionality with a complex household survey test data set that has been distributed by the International Household Survey Network.
Date: 2015-10-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v067i04/v67i04.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... dcMicro_4.6.0.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v067i04/v67i04.R
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:067:i04
DOI: 10.18637/jss.v067.i04
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().