EconPapers    
Economics at your fingertips  
 

Generating Correlated and/or Overdispersed Count Data: A SAS Implementation

George Kalema and Geert Molenberghs

Journal of Statistical Software, 2016, vol. 070, issue c01

Abstract: Analysis of longitudinal count data has, for long, been done using a generalized linear mixed model (GLMM), in its Poisson-normal version, to account for correlation by specifying normal random effects. Univariate counts are often handled with the negativebinomial (NEGBIN) model taking into account overdispersion by use of gamma random effects. Inherently though, longitudinal count data commonly exhibit both features of correlation and overdispersion simultaneously, necessitating analysis methodology that can account for both. The introduction of the combined model (CM) by Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs, Verbeke, Demétrio, and Vieira (2010) serves this purpose, not only for count data but for the general exponential family of distributions. Here, a Poisson model is specified as the parent distribution of the data with a normally distributed random effect at the subject or cluster level and/or a gamma distribution at observation level. The GLMM and NEGBIN model are special cases. Data can be simulated from (1) the general CM, with random effects, or, (2) its marginal version directly. This paper discusses an implementation of (1) in SAS software (SAS Inc. 2011). One needs to reflect on the mean of both the combined (hierarchical) and marginal models in order to generate correlated and/or overdispersed counts. A pre-specification of the desired marginal mean (in terms of covariates and marginal parameters), a marginal variance-covariance structure and the hierarchical mean (in terms of covariates and regression parameters) is required. The implied hierarchical parameters, the variance-covariance matrix of the random effects, and the variance-covariance matrix of the overdispersion part are then derived from which correlated Poisson data are generated. Sample calls of the SAS macro are presented as well as output.

Date: 2016-04-13
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v070c01/v70c01.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 0c01/CorrPoisson.sas
https://www.jstatsoft.org/index.php/jss/article/do ... e/v070c01/v70c01.sas

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:070:c01

DOI: 10.18637/jss.v070.c01

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:070:c01