EconPapers    
Economics at your fingertips  
 

Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance

Maëlle Salmon, Dirk Schumacher and Michael Höhle

Journal of Statistical Software, 2016, vol. 070, issue i10

Abstract: Public health surveillance aims at lessening disease burden by, e.g., timely recognizing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective, this implies the use of appropriate methods for monitoring time series of aggregated case reports. This paper presents the tools for such automatic aberration detection offered by the R package surveillance. We introduce the functionalities for the visualization, modeling and monitoring of surveillance time series. With respect to modeling we focus on univariate time series modeling based on generalized linear models (GLMs), multivariate GLMs, generalized additive models and generalized additive models for location, shape and scale. Applications of such modeling include illustrating implementational improvements and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or by treating it in a Bayesian context. Furthermore, we look at categorical time series and address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With respect to monitoring we consider detectors based on either a Shewhart-like single timepoint comparison between the observed count and the predictive distribution or by likelihoodratio based cumulative sum methods. Finally, we illustrate how surveillance can support aberration detection in practice by integrating it into the monitoring workflow of a public health institution. Altogether, the present article shows how well surveillance can support automatic aberration detection in a public health surveillance context.

Date: 2016-05-18
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v070i10/v70i10.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... llance_1.12.1.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v070i10/v70i10.R
https://www.jstatsoft.org/index.php/jss/article/do ... 0i10/v70i10-data.zip

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:070:i10

DOI: 10.18637/jss.v070.i10

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:070:i10