Economics at your fingertips  

Continuous Time Structural Equation Modeling with R Package ctsem

Charles C. Driver, Johan H. L. Oud and Manuel C. Voelkle

Journal of Statistical Software, 2017, vol. 077, issue i05

Abstract: We introduce ctsem, an R package for continuous time structural equation modeling of panel (N > 1) and time series (N = 1) data, using full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel models) in the social and behavioural sciences are discrete time models. An assumption of discrete time models is that time intervals between measurements are equal, and that all subjects were assessed at the same intervals. Violations of this assumption are often ignored due to the difficulty of accounting for varying time intervals, therefore parameter estimates can be biased and the time course of effects becomes ambiguous. By using stochastic differential equations to estimate an underlying continuous process, continuous time models allow for any pattern of measurement occasions. By interfacing to OpenMx, ctsem combines the flexible specification of structural equation models with the enhanced data gathering opportunities and improved estimation of continuous time models. ctsem can estimate relationships over time for multiple latent processes, measured by multiple noisy indicators with varying time intervals between observations. Within and between effects are estimated simultaneously by modeling both observed covariates and unobserved heterogeneity. Exogenous shocks with different shapes, group differences, higher order diffusion effects and oscillating processes can all be simply modeled. We first introduce and define continuous time models, then show how to specify and estimate a range of continuous time models using ctsem.

Date: 2017-04-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link) ... 5/ctsem_2.3.1.tar.gz ... ile/v077i05/v77i05.R

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:


Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

Page updated 2019-03-02
Handle: RePEc:jss:jstsof:v:077:i05