PrevMap: An R Package for Prevalence Mapping
Emanuele Giorgi and
Peter J. Diggle
Journal of Statistical Software, 2017, vol. 078, issue i08
Abstract:
In this paper we introduce a new R package, PrevMap, for the analysis of spatially referenced prevalence data, including both classical maximum likelihood and Bayesian approaches to parameter estimation and plug-in or Bayesian prediction. More specifically, the new package implements fitting of geostatistical models for binomial data, based on two distinct approaches. The first approach uses a generalized linear mixed model with logistic link function, binomial error distribution and a Gaussian spatial process as a stochastic component in the linear predictor. A simpler, but approximate, alternative approach consists of fitting a linear Gaussian model to empirical-logit-transformed data. The package also includes implementations of convolution-based low-rank approximations to the Gaussian spatial process to enable computationally efficient analysis of large spatial datasets. We illustrate the use of the package through the analysis of Loa loa prevalence data from Cameroon and Nigeria. We illustrate the use of the low rank approximation using a simulated geostatistical dataset.
Date: 2017-06-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v078i08/v78i08.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... PrevMap_1.4.1.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v078i08/v78i08.R
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:078:i08
DOI: 10.18637/jss.v078.i08
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().