Volatility Forecasting in the Hang Seng Index using the GARCH Approach
Wei Liu and
Bruce Morley
Asia-Pacific Financial Markets, 2009, vol. 16, issue 1, 63 pages
Abstract:
The aim of this paper is to add to the literature on volatility forecasting using data from the Hong Kong stock market to determine if forecasts from GARCH based models can outperform simple historical averaging models. Overall, unlike previous studies we find that the GARCH models with non-Normal distributions show a robust volatility forecasting performance in comparison to the historical models. The results indicate that although not all models outperform simple historical averaging, the EGARCH based models, with non-normal conditional volatility, tend to produce more accurate out-of-sample forecasts using both standard measures of forecast accuracy and financial loss functions. In addition we test for asymmetric adjustment in the Hang Seng, finding strong evidence of asymmetries due to the domination of financial and property firms in this market. Copyright Springer Science+Business Media, LLC. 2009
Keywords: GARCH; Hang Seng; Volatility; Forecast; Asymmetric; Stock price (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10690-009-9086-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:apfinm:v:16:y:2009:i:1:p:51-63
Ordering information: This journal article can be ordered from
http://www.springer.com/finance/journal/10690/PS2
DOI: 10.1007/s10690-009-9086-4
Access Statistics for this article
Asia-Pacific Financial Markets is currently edited by Jiro Akahori
More articles in Asia-Pacific Financial Markets from Springer, Japanese Association of Financial Economics and Engineering
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().