Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data
Mike So () and
Rui Xu
Asia-Pacific Financial Markets, 2013, vol. 20, issue 1, 83-111
Abstract:
In this paper, we develop modeling tools to forecast Value-at-Risk and volatility with investment horizons of less than one day. We quantify the market risk based on the study at a 30-min time horizon using modified GARCH models. The evaluation of intraday market risk can be useful to market participants (day traders and market makers) involved in frequent trading. As expected, the volatility features a significant intraday seasonality, which motivates us to include the intraday seasonal indexes in the GARCH models. We also incorporate realized variance (RV) and time-varying degrees of freedom in the GARCH models to capture more intraday information on the volatile market. The intrinsic tail risk index is introduced to assist with understanding the inherent risk level in each trading time interval. The proposed models are evaluated based on their forecasting performance of one-period-ahead volatility and Intraday Value-at-Risk (IVaR) with application to the 30 constituent stocks. We find that models with seasonal indexes generally outperform those without; RV can improve the out-of-sample forecasts of IVaR; student GARCH models with time-varying degrees of freedom perform best at 0.5 and 1 % IVaR, while normal GARCH models excel for 2.5 and 5 % IVaR. The results show that RV and seasonal indexes are useful to forecasting intraday volatility and Intraday VaR. Copyright Springer Japan 2013
Keywords: GARCH; Intraday market risk; Intrinsic tail risk index; Realized volatility; Risk management; Seasonality; Value at Risk (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10690-012-9160-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:apfinm:v:20:y:2013:i:1:p:83-111
Ordering information: This journal article can be ordered from
http://www.springer.com/finance/journal/10690/PS2
DOI: 10.1007/s10690-012-9160-1
Access Statistics for this article
Asia-Pacific Financial Markets is currently edited by Jiro Akahori
More articles in Asia-Pacific Financial Markets from Springer, Japanese Association of Financial Economics and Engineering
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().