Can Clean Energy Stocks Predict Crude Oil Markets Using Hybrid and Advanced Machine Learning Models?
Anis Jarboui () and
Emna Mnif
Additional contact information
Anis Jarboui: Nice University and Sfax University
Emna Mnif: Sfax University
Asia-Pacific Financial Markets, 2024, vol. 31, issue 4, No 2, 844 pages
Abstract:
Abstract The volatility of crude oil markets and the pressing need for sustainable energy solutions have sparked significant interest in forecasting methodologies that can better capture market dynamics and incorporate environmentally responsible indicators. In this study, we address the gaps in the literature by proposing novel hybrid approaches based on combining wavelet decomposition with machine learning techniques (ANN-Wavelet and SVR-Wavelet) and advanced machine learning techniques (XGBoost and GBM) with advanced clean energy indicators to predict crude oil prices. These hybrid models significantly advance the field by reducing noise and improving result accuracy. Besides, these approaches were used to determine the best model for predicting crude oil market prices. Additionally, we employed the SHapely Additive exPlanations (SHAP) algorithm to analyze and interpret the models, enhancing transparency and explainability. Subsequently, we applied SHAP to investigate the predictive value of various asset classes, including the volatility index (VIX), precious metal markets (gold and silver), fuel markets (gasoline and natural gas), as well as green and renewable energy indices, about crude oil prices. The results reveal that the wavelet-SVR model demonstrates consistent and robust forecasting performance with low RMSE and MAPE values. Additionally, the GBM model emerges as highly accurate, yielding shallow forecasting errors. Conversely, the wavelet-ANN and XGBoost models exhibit mixed performance, showing effectiveness in the Full Sample but reduced accuracy during the Russia–Ukraine conflict. Notably, green and renewable energy markets, such as CGA and NextEra energy (NEE), emerge as significant predictors in forecasting crude oil prices. This research provides critical guidance amidst the Russia–Ukraine conflict in predicting oil prices by emphasizing the importance of incorporating environmentally responsible indicators into investment portfolios and policy choices.
Keywords: Wavelet decomposition; SVR-wavelet; ANN-wavelet; XGBoost; GBM; SHAP; Renewable energy; Green market (search for similar items in EconPapers)
JEL-codes: B26 C6 C7 F3 G11 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10690-023-09432-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:apfinm:v:31:y:2024:i:4:d:10.1007_s10690-023-09432-9
Ordering information: This journal article can be ordered from
http://www.springer.com/finance/journal/10690/PS2
DOI: 10.1007/s10690-023-09432-9
Access Statistics for this article
Asia-Pacific Financial Markets is currently edited by Jiro Akahori
More articles in Asia-Pacific Financial Markets from Springer, Japanese Association of Financial Economics and Engineering
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().