Constrained Maximum Likelihood
Ronald Schoenberg ()
Computational Economics, 1997, vol. 10, issue 3, 66 pages
Abstract:
Constrained Maximum Likelihood (CML), developed at Aptech Systems, generates maximum likelihood estimates with general parametric constraints (linear or nonlinear, equality or inequality), using the sequential quadratic programming method. CML computes two classes of confidence intervals by inversion of the Wald and likelihood ratio statistics, and by simulation. The inversion techniques can produce misleading test sizes, but Monte Carlo evidence suggests this problem can be corrected under certain circumstances. Citation Copyright 1997 by Kluwer Academic Publishers.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:10:y:1997:i:3:p:251-66
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().