Numerical Strategies for Solving the Nonlinear Rational Expectations Commodity Market Model
Mario Miranda ()
Computational Economics, 1998, vol. 11, issue 1-2, 87 pages
Abstract:
In this paper, I compare the accuracy, efficiency and stability of different numerical strategies for computing approximate solutions to the nonlinear rational expectations commodity market model. I find that polynomial and spline function collocation methods are superior to the space discretization, linearization and least squares curve-fitting methods that have been preferred by economists in the past. Citation Copyright 1998 by Kluwer Academic Publishers.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:11:y:1998:i:1-2:p:71-87
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().