The WALRAS Algorithm: A Convergent Distributed Implementation of General Equilibrium Outcomes
John Q Cheng and
Michael Wellman
Computational Economics, 1998, vol. 12, issue 1, 24 pages
Abstract:
The WALRAS algorithm calculates competitive equilibria via a distributed tatonnement-like process, in which agents submit single-good demand functions to market-clearing auctions. The algorithm is asynchronous and decentralized with respect to both agents and markets, making it suitable for distributed implementation. We present a formal description of this algorithm, and prove that it converges under the standard assumption of gross substitutability. We relate our results to the literature on general equilibrium stability and some more recent work on decentralized algorithms. We present some experimental results as well, particularly for cases where the assumptions required to guarantee convergence do not hold. Finally, we consider some extensions and generalizations to the WALRAS algorithm. Citation Copyright 1998 by Kluwer Academic Publishers.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
Working Paper: The WALRAS Algorithm: A Convergent Distributed Implementation of General Equilibrium Outcomes (1995) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:12:y:1998:i:1:p:1-24
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().