Solving Irregular Econometric and Mathematical Optimization Problems with a Genetic Hybrid Algorithm
Ralf Ostermark
Computational Economics, 1999, vol. 13, issue 2, 103-15
Abstract:
In the present paper we apply a new Genetic Hybrid Algorithm (GHA) to globally minimize a representative set of ill-conditioned econometric/mathematical functions. The genetic algorithm was specifically designed for nonconvex mixed integer nonlinear programming problems and it can be successfully applied to both global and constrained optimization. In previous studies, we have demonstrated the efficiency of the GHA in solving complicated NLP, INLP and MINLP problems. The present study is a continuation of this research, now focusing on a set of highly irregular optimization problems. In this paper we discuss the genetic hybrid algorithm, the nonlinear problems to be solved and present the results of the empirical tests. Citation Copyright 1999 by Kluwer Academic Publishers.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:13:y:1999:i:2:p:103-15
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().