Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation
Saeed Moshiri,
Norman E Cameron and
David Scuse
Computational Economics, 1999, vol. 14, issue 3, 219-35
Abstract:
The back-propagation neural network (BPN) model has been the most popular form of artificial neural network model used for forecasting, particularly in economics and finance. It is a static (feed-forward) model which has a learning process in both hidden and output layers. In this paper we compare the performance of the BPN model with that of two other neural network models, viz., the radial basis function network (RBFN) model and the recurrent neural network (RNN) model, in the context of forecasting inflation. The RBFN model is a hybrid model with a learning process that is much faster than the BPN model and that is able to generate almost the same results as the BPN model. The RNN model is a dynamic model which allows feedback from other layers to the input layer, enabling it to capture the dynamic behavior of the series. The results of the ANN models are also compared with those of the econometric time series models. Citation Copyright 1999 by Kluwer Academic Publishers.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:14:y:1999:i:3:p:219-35
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().