Empirical Game Theoretic Models: Computational Issues
Olivier Armantier and
Jean-Francois Richard
Computational Economics, 2000, vol. 15, issue 1-2, 3-24
Abstract:
This paper discusses computational issues raised by a generic solution and estimation methodology applicable to a broad range of empirical game theoretic models with incomplete information. By combining the use of Monte Carlo simulation techniques with that of smooth kernel estimation of empirical distribution functions, the authors develop a numerical algorithm of unparalleled performance and flexibility applicable, in particular, to models for which no operational solutions currently exist. An illustration to a set of procurement data from the French aerospace industry is used to illustrate the operation of this algorithm. Citation Copyright 2000 by Kluwer Academic Publishers.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:15:y:2000:i:1-2:p:3-24
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().