EconPapers    
Economics at your fingertips  
 

Genetic Programming Prediction of Stock Prices

M. A. Kaboudan

Computational Economics, 2000, vol. 16, issue 3, 207-236

Abstract: Based on predictions of stock-prices using genetic programming (or GP), a possibly profitable trading strategy is proposed. A metric quantifying the probability that a specific time series is GP-predictable is presented first. It is used to show that stock prices are predictable. GP then evolves regression models that produce reasonable one-day-ahead forecasts only. This limited ability led to the development of a single day-trading strategy (SDTS) in which trading decisions are based on GP-forecasts of daily highest and lowest stock prices. SDTS executed for fifty consecutive trading days of six stocks yielded relatively high returns on investment.

Keywords: evolved regression models; stock returns; financial market analysis; nonlinear systems (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:16:y:2000:i:3:p:207-236

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:16:y:2000:i:3:p:207-236