EconPapers    
Economics at your fingertips  
 

Maximum Likelihood Estimation Using Parallel Computing: An Introduction to MPI

Christopher Swann

Computational Economics, 2002, vol. 19, issue 2, 145-78

Abstract: The computational difficulty of econometric problems has increased dramatically in recent years as econometricians examine more complicated models and utilize more sophisticated estimation techniques. Many problems in econometrics are "embarrassingly parallel" and can take advantage of parallel computing to reduce the wall clock time it takes to solve a problem. In this paper I demonstrate a method that can be used to solve a maximum likelihood problem using the MPI message passing library. The econometric problem is a simple multinomial logit model that does not require parallel computing but illustrates many of the problems one would confront when estimating more complicated models. Copyright 2002 by Kluwer Academic Publishers

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:19:y:2002:i:2:p:145-78

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-30
Handle: RePEc:kap:compec:v:19:y:2002:i:2:p:145-78