EconPapers    
Economics at your fingertips  
 

Exchange-Rates Forecasting: A Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks

Andreas S Andreou, Efstratios F Georgopoulos and Spiridon D Likothanassis

Computational Economics, 2002, vol. 20, issue 3, 210 pages

Abstract: The use of neural networks trained by a new hybrid algorithm is employed on forecasting the Greek Foreign Exchange-Rate Market. Four major currencies, namely the U.S. Dollar (USD), the Deutsche Mark (DEM), the French Franc (FF) and the British Pound (GBP), versus the Greek Drachma, were used as experimental data. The proposed algorithm combines genetic algorithms and a training method based on the localized Extended Kalman Filter (EKF), in order to evolve the structure and train Multi-Layered Perceptron (MLP) neural networks. The goal of this effort is to predict, as accurately as possible, exchange-rates future behavior. Simulation results show that the method gives highly successful results, while the diversification of the structure between the four currencies has no effect on the performance. Copyright 2002 by Kluwer Academic Publishers

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:20:y:2002:i:3:p:191-210

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:20:y:2002:i:3:p:191-210