Multiscale Analysis of Stock Index Return Volatility
Enrico Capobianco ()
Additional contact information
Enrico Capobianco: CWI, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands
Computational Economics, 2004, vol. 23, issue 3, 219-237
Abstract:
We present a study where wavelet approximation techniques and some related computational algorithms are applied to non-stationary high frequency financial times series. Wavelets represent a novel instrument as far as concerned applications in the finance setting, but have a great relevance in many domains, from physics to statistics. Thus, while one goal of the paper is to compare the numerical performance of global and local function optimizers, another goal is to try to show that ad hoc wavelet-based function dictionaries are very useful for financial modeling through signal decomposition and approximation. Detecting the latent dependence features which are typically found in high frequency financial returns is particularly important for the scope of proposing models which are able to achieve reliable results in parameter estimation and pointwise function prediction. We show that by pre-processing data with wavelet dictionaries we effectively account for hidden periodic components, whose discovery allows to attain and improve the feature extraction power. We refer to sparse approximation through the Matching Pursuit algorithm, thus handling the negative effects of covariance non-stationarity at very high frequencies.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:23:y:2004:i:3:p:219-237
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().