Computational Issues in the Sequential Probit Model: A Monte Carlo Study
Patrick Waelbroeck
Computational Economics, 2005, vol. 26, issue 2, 161 pages
Abstract:
We discuss computational issues in the sequential probit model that have limited its use in applied research. We estimate parameters of the model by the method of simulated maximum likelihood (SML) and by Bayesian MCMC algorithms. We provide Monte Carlo evidence on the relative performance of both estimators and find that the SML procedure computes standard errors of the estimated correlation coefficients that are less reliable. Given the numerical difficulties associated with the estimation procedures, we advise the applied researcher to use both the stochastic optimization algorithm in the Simulated Maximum Likelihood approach and the Bayesian MCMC algorithm to check the compatibility of the results. Copyright Springer Science + Business Media, Inc. 2005
Keywords: Metropolis–Gibbs; sequential probit; simulated maximum likelihood; simulated annealing (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-005-0667-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:26:y:2005:i:2:p:141-161
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-005-0667-7
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().