Portfolio optimization when risk factors are conditionally varying and heavy tailed
Toker Doganoglu,
Christoph Hartz and
Stefan Mittnik
Computational Economics, 2007, vol. 29, issue 3, 333-354
Abstract:
Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant variance continues to be the standard framework in portfolio management. Here we propose a practical approach to portfolio selection. It takes both the conditionally varying volatility and the fat-tailedness of risk factors explicitly into account, while retaining analytical tractability and ease of implementation. An application to a portfolio of nine German DAX stocks illustrates that the model is strongly favored by the data and that it is practically implementable. Copyright Springer Science+Business Media, LLC 2007
Keywords: Multivariate stable distribution; Index model; Portfolio optimization; Value-at-risk; Model adequacy (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-006-9071-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:29:y:2007:i:3:p:333-354
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-006-9071-1
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().