EconPapers    
Economics at your fingertips  
 

Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction

Tristan Fletcher () and John Shawe-Taylor ()

Computational Economics, 2013, vol. 42, issue 2, 217-240

Abstract: Financially motivated kernels based on EURUSD currency data are constructed from limit order book volumes, commonly used technical analysis methods and canonical market microstructure models—the latter in the form of Fisher kernels. These kernels are used through their incorporation into support vector machines (SVM) to predict the direction of price movement for the currency over multiple time horizons. Multiple kernel learning is used to replicate the signal combination process that trading rules embody when they aggregate multiple sources of financial information. Significant outperformance relative to both the individual SVM and benchmarks is found, along with an indication of which features are the most informative for financial prediction tasks. An average accuracy of 55% is achieved when classifying the direction of price movement into one of three categories for a 200 s predictive time horizon. Copyright Springer Science+Business Media, LLC. 2013

Keywords: Multiple kernel learning; Support vector machines; Limit order books; Kernel methods; Market microstructure; Fisher kernels (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-012-9317-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:42:y:2013:i:2:p:217-240

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-012-9317-z

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:42:y:2013:i:2:p:217-240