EconPapers    
Economics at your fingertips  
 

Bacterial Foraging Optimization Approach to Portfolio Optimization

Yucheng Kao () and Hsiu-Tzu Cheng

Computational Economics, 2013, vol. 42, issue 4, 453-470

Abstract: In this paper we propose a heuristic approach based on bacterial foraging optimization (BFO) in order to find the efficient frontier associated with the portfolio optimization (PO) problem. The PO model with cardinality and bounding constraints is a mixed quadratic and integer programming problem for which no exact algorithms can solve in an efficient way. Consequently, various heuristic algorithms, such as genetic algorithms and particle swarm optimization, have been proposed in the past. This paper aims to examine the potential of a BFO algorithm in solving the PO problem. BFO is a new swarm intelligence technique that has been successfully applied to several real world problems. Through three operations, chemotaxis, reproduction, and elimination-dispersal, the proposed BFO algorithm can effectively solve a PO problem. The performance of the proposed approach was evaluated in computational tests on five benchmark data sets, and the results were compared to those obtained from existing heuristic algorithms. The proposed BFO algorithm is found to be superior to previous heuristic algorithms in terms of solution quality and time. Copyright Springer Science+Business Media New York 2013

Keywords: Bacterial foraging optimization; Swarm intelligence; Portfolio optimization; Efficient frontier (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-012-9357-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:42:y:2013:i:4:p:453-470

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-012-9357-4

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:42:y:2013:i:4:p:453-470