Simulating the Evolution of Market Shares: The Effects of Customer Learning and Local Network Externalities
Liangjie Zhao and
Wenqi Duan ()
Computational Economics, 2014, vol. 43, issue 1, 53-70
Abstract:
This paper develops a simulation model to investigate competitive technology diffusion, and focuses on examining the influence of customer learning on the evolution of market share when both technologies exhibit local network externalities. Results show that: (1) the equilibrium market share of the new technology is determined by two key factors: the characteristics of customer learning behavior and the strength of local network externalities; (2) moderate network externalities can be beneficial for new technology to dominate the entire market when customers adopt belief-based learning rule; (3) moderate learning rate would facilitate the diffusion of new technology when customers make their decisions based on reinforcement learning; (4) the decay of customer learning and the proportions of imitators in market would help the old technology establish advantage by maintaining demand inertia of customer. The joint effects of psychology of customer behavior and local interactions of customers offer a new mechanism to explain the diffusion of technology in a competitive market with network externalities. Copyright Springer Science+Business Media New York 2014
Keywords: Market evolution; Technology diffusion; Customer learning; Local network externalities (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-013-9374-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:43:y:2014:i:1:p:53-70
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-013-9374-y
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().