Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques
Elena Olmedo ()
Computational Economics, 2014, vol. 43, issue 2, 183-197
Abstract:
In this paper, alternative non-parametric forecasting techniques are analysed, with emphasis placed on the difference between the reconstruction and learning approaches. The former is based on Takens’ Theorem, which recovers unknown dynamic properties of a system; it is appropriate in deterministic systems. The latter is a powerful instrument in noisy systems. Both techniques are applied to the forecasting of Spanish unemployment, first one step -forecasting and second using a longer time horizon of prediction. To assess the robustness and generality of the methods we have employed unemployment time series of different European countries. Copyright Springer Science+Business Media New York 2014
Keywords: Forecasting; Neural networks; Unemployment; Nonlinearity; B41; C14; C32; C45; C51; C53 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-013-9371-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:43:y:2014:i:2:p:183-197
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-013-9371-1
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().