A Predictive Analysis of Clean Energy Consumption, Economic Growth and Environmental Regulation in China Using an Optimized Grey Dynamic Model
Zheng-Xin Wang ()
Computational Economics, 2015, vol. 46, issue 3, 437-453
Abstract:
To accurately predict the consumption of clean energy in China, a grey dynamic model is constructed by taking economic growth and environmental regulation as exogenous variables. The Nash equilibrium idea-based optimization method is proposed to solve the parameters of the model so as to obtain better modeling effects than that of the traditional model. The empirical results show that: (1) a spontaneous increasing mechanism of the clean energy consumption has not yet formed in China; (2) both GDP and effluent charge play a positive role in accelerating clean energy consumption in China, but effluent charge has a stronger effect than GDP; (3) clean energy consumption in China is expected to stably increase at an annual rate of 5.73 % averagely in 2012–2020. By 2020, clean energy consumption in China is expected to reach 454.55 million tons of standard coal. The study also provides some policy suggestions of promoting clean energy consumption based on the empirical analysis conclusions. Copyright Springer Science+Business Media New York 2015
Keywords: Clean energy consumption; Economic growth; Environmental regulation; Grey dynamic model; Optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10614-015-9488-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:46:y:2015:i:3:p:437-453
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-015-9488-5
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().