Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall
Yu-Ying Tzeng (),
Paul Beaumont and
Giray Ökten ()
Additional contact information
Yu-Ying Tzeng: Florida State University
Giray Ökten: Florida State University
Computational Economics, 2018, vol. 52, issue 1, No 3, 55-77
Abstract:
Abstract Quasi-Monte Carlo methods are designed to produce efficient estimates of simulated values but the error statistics of these estimates are difficult to compute. Randomized quasi-Monte Carlo methods have been developed to address this shortcoming. In this paper we compare quasi-Monte Carlo and randomized quasi-Monte Carlo techniques for simulating time series. We use randomized quasi-Monte Carlo to compute value-at-risk and expected shortfall measures for a stock portfolio whose returns follow a highly nonlinear Markov switching stochastic volatility model which does not admit analytical solutions for the returns distribution. Quasi-Monte Carlo methods are more accurate but do not allow the computation of reliable confidence intervals about risk measures. We find that randomized quasi-Monte Carlo methods maintain many of the advantages of quasi-Monte Carlo while also providing the ability to produce reliable confidence intervals of the simulated risk measures. However, the advantages in speed of convergence of randomized quasi-Monte Carlo diminish as the forecast horizon increases.
Keywords: Quasi-Monte Carlo; Randomized Quasi-Monte Carlo; Time series simulation; Value-at-risk; Expected shortfall (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-017-9661-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:52:y:2018:i:1:d:10.1007_s10614-017-9661-0
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-017-9661-0
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().