EconPapers    
Economics at your fingertips  
 

Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models

Sepehr Ramyar () and Farhad Kianfar ()
Additional contact information
Sepehr Ramyar: Sharif University of Technology
Farhad Kianfar: Sharif University of Technology

Computational Economics, 2019, vol. 53, issue 2, No 11, 743-761

Abstract: Abstract Given the importance of crude oil prices for businesses, governments and policy makers, this paper investigates predictability of oil prices using artificial neural networks taking into account the exhaustible nature of crude oil and impact of monetary policy along with other major drivers of crude oil prices. A multilayer perceptron neural network is developed and trained with historical data from 1980 to 2014 and using mean square error for testing data, optimal number of hidden layer neurons is determined and the designed MLP neural network is used for estimation of the forecasting model. Meanwhile, an economic model for crude oil prices is developed and estimated using a vector autoregressive model. Results from the proposed ANN are then compared to those of the vector autoregressive model and based on the corresponding R-squared for each model, it is concluded that the MLP neural network can more accurately predict crude oil prices than a VAR model. It is shown, via empirical analysis, that with a combination of appropriate neural network design, feature engineering, and incorporation of crude oil market realities in the model, an accurate prediction of crude oil prices can be attained.

Keywords: Crude oil price; Forecasting; Artificial neural networks; Vector autroregressive model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://link.springer.com/10.1007/s10614-017-9764-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:53:y:2019:i:2:d:10.1007_s10614-017-9764-7

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-017-9764-7

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:53:y:2019:i:2:d:10.1007_s10614-017-9764-7