Forecasting Corporate Bankruptcy Using Accrual-Based Models
Philippe du Jardin (),
David Veganzones and
Eric Séverin
Additional contact information
David Veganzones: Université de Lille 1
Eric Séverin: Université de Lille 1
Computational Economics, 2019, vol. 54, issue 1, No 3, 7-43
Abstract:
Abstract Financial information has been widely used to design bankruptcy prediction models. All research works that have studied such models assume that financial statements are reliable. However, reality is a bit different. Indeed, firms may tend to present their financial accounts depending on particular circumstances, especially when seeking to change the perception of the risk incurred by their partners, and thus distort or alter some of them. Consequently, one may wonder to what extent such “manipulations”, called earnings management, may influence any model that relies on accounting data. This is why we study how earnings management may affect financial variables and how it can indirectly distort predictions made by failure models. For this purpose, we used a measure that makes it possible to assess potential account manipulations, and not effective manipulations. Our results show that when these distortions are measured and used with other financial variables, models are more accurate than those that solely rely on pure financial data. They also show that the improvement of model accuracy is essentially due to a reduction of type-I error—the costliest error in economic terms.
Keywords: Bankruptcy prediction; Earnings management; Finance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-017-9681-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:54:y:2019:i:1:d:10.1007_s10614-017-9681-9
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-017-9681-9
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().