Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model
Ruey Yau () and
C. Hueng
Additional contact information
Ruey Yau: National Central University
Computational Economics, 2019, vol. 54, issue 1, No 9, 177-198
Abstract:
Abstract This paper proposes a mixed-frequency small open economy structural model, in which the structure comes from a New Keynesian dynamic stochastic general equilibrium (DSGE) model. An aggregation rule is proposed to link the latent aggregator to the observed quarterly output growth via aggregation. The resulting state-space model is estimated by the Kalman filter and the estimated current aggregator is used to nowcast the quarterly GDP growth. Taiwanese data from January 1998 to December 2015 are used to illustrate how to implement the technique. The DSGE-based mixed-frequency model outperforms the reduced-form mixed-frequency model and the MIDAS model on nowcasting Taiwan’s quarterly GDP growth.
Keywords: DSGE model; Mixed frequency; Nowcasting; Kalman filter (search for similar items in EconPapers)
JEL-codes: C5 E1 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-017-9697-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:54:y:2019:i:1:d:10.1007_s10614-017-9697-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-017-9697-1
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().