Are Central Bankers Inflation Nutters? An MCMC Estimator of the Long-Memory Parameter in a State Space Model
Fredrik Andersson and
Yushu Li ()
Additional contact information
Yushu Li: University of Bergen
Computational Economics, 2020, vol. 55, issue 2, No 7, 529-549
Abstract:
Abstract Inflation targeting is a common monetary policy regime. Inflation targets are often flexible in the sense that the central bank allows inflation to temporarily deviate from the target to avoid causing unnecessary volatility in the real economy. In this paper, we propose modeling the degree of flexibility using an autoregressive fractionally integrated moving average (ARFIMA) model. Assuming that the central bank controls the long-run inflation rate, the fractional integration order becomes a measure of how flexible the inflation target is. A higher integration order implies that inflation deviates from the target for longer periods of time and consequently, that the target is flexible. Several estimators of the fractional integration order have been proposed in the literature. Grassi and Magistris (2014) show that a state-based maximum likelihood estimator is superior to other estimators, but our simulations show that their finding is over-biased for a nearly non-stationary time series. To resolve this issue, we first proposed a Bayesian Monte Carlo Markov Chain (MCMC) estimator for fractional integration parameters. This estimator resolves the problem of over-bias. We estimate the fractional integration order for 6 countries for the period 1993M1 to 2017M9. We found that inflation was integrated to an order of 0.8 to 0.9 indicating that the inflation targets are implemented with a high degree of flexibility.
Keywords: Fractional integration; Inflation-targeting; State space model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-019-09900-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:55:y:2020:i:2:d:10.1007_s10614-019-09900-3
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-019-09900-3
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().