EconPapers    
Economics at your fingertips  
 

Short Term Firm-Specific Stock Forecasting with BDI Framework

Mansoor Ahmed (), Anirudh Sriram () and Sanjay Singh ()
Additional contact information
Mansoor Ahmed: University of Cambridge
Anirudh Sriram: Manipal Academy of Higher Education (MAHE)
Sanjay Singh: Manipal Academy of Higher Education (MAHE)

Computational Economics, 2020, vol. 55, issue 3, No 1, 745-778

Abstract: Abstract In today’s information age, a comprehensive stock trading decision support system which aids a stock investor in decision making without relying on random guesses and reading financial news from various sources is the need of the hour. This paper investigates the predictive power of technical, sentiment and stock market analysis coupled with various machine learning and classification tools in predicting stock trends over the short term for a specific company. Large dataset stretching over a duration of ten years has been used to train, test and validate our system. The efficacy of supervised non-shallow and prototyping learning architectures are illustrated by comparison of results obtained through myriad optimization, classification and clustering algorithms. The results obtained from our system reveals a significant improvement over the efficient market hypothesis for specific companies and thus strongly challenges it. Technical parameters and algorithms used have shown a significant impact on the predictive power of the system. The predictive accuracy obtained is as high as 70–75% using linear vector quantization. It has been found that sentiment analysis has strong correlation with the future market trends. The proposed system provides a comprehensive decision support system which aids in decision making for stock trading. We also present a novel application of the BDI framework to systematically apply the learning and prediction phases.

Keywords: Supervised learning; Stock market forecasting; Technical analysis; Sentiment analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10614-019-09911-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09911-0

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-019-09911-0

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09911-0