A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model
Xuejie Feng () and
Chiping Zhang ()
Additional contact information
Xuejie Feng: Harbin Institute of Technology
Chiping Zhang: Harbin Institute of Technology
Computational Economics, 2020, vol. 55, issue 3, No 12, 1044 pages
Abstract:
Abstract As a linear regression parameter estimation method, the least square method plays an indispensable role in the parameter estimation of ARCH model. Although the least squares solution can minimize the sum of the squared errors, it will cause uneven distribution of errors, that is, some fitting errors are too large, and some fitting errors are too small, which will lead to overfitting. In response to this situation, we adopt a novel perturbation method to solve this problem. The specific theoretical derivation of the perturbation method is given in this paper. It takes parameters estimated by the least squares method as its initial iteration value. The maximum fitting error will decrease continuously from a series of iterations to final convergence. Furthermore, based on the perturbation method, this paper finds a condition that makes the ARCH model satisfy the non-negative limit of parameters. The experimental process uses real stock fund’s fluctuation data for fitting analysis and prediction. The experimental results show that the perturbation method can achieve the expected effect in the parameter estimation of the ARCH model, it can also effectively ensure that the fitting errors fluctuate within the controllable range when predicting the price fluctuation of stock funds in the future.
Keywords: Perturbation; Maximum error minimization; Prediction; Heteroscedasticity; 40A05; 47N10; 97M40; 90C30 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-019-09919-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09919-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-019-09919-6
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().