Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters
Sanha Noh ()
Additional contact information
Sanha Noh: University of Missouri
Computational Economics, 2020, vol. 56, issue 4, No 6, 795-841
Abstract:
Abstract This paper studies Gaussian-based filters within the pseudo-marginal Metropolis Hastings (PM-MH) algorithm for posterior inference on parameters in nonlinear DSGE models. We implement two Gaussian-based filters to evaluate the likelihood of a DSGE model solved to second and third order and embed them into the PM-MH: Central Difference Kalman filter (CDKF) and Gaussian mixture filter (GMF). The GMF is adaptively refined by splitting a mixture component into new mixture components based on Binomial Gaussian mixture. The overall results indicate that the estimation accuracy of the CDKF and the GMF is comparable to that of the particle filter (PF), except that the CDKF generates biased estimates in the extremely nonlinear case. The proposed GMF generates the most accurate estimates among them. We argue that the GMF with PM-MH can converge to the true and invariant distribution when the likelihood constructed by infinite Gaussian mixtures weakly converges to the true likelihood. In addition, we show that the Gaussian-based filters are more efficient than the PF in terms of effective computing time. Finally, we apply the method to real data.
Keywords: Nonlinear DSGE; Central Difference Kalman filter; Gaussian mixture filter; Pseudo-marginal MH; Pseudo posterior (search for similar items in EconPapers)
JEL-codes: C11 E1 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-019-09944-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:56:y:2020:i:4:d:10.1007_s10614-019-09944-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-019-09944-5
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().