Optimizing Algorithmic Strategies for Trading Bitcoin
Gil Cohen ()
Additional contact information
Gil Cohen: Western Galilee Academic College
Computational Economics, 2021, vol. 57, issue 2, No 11, 639-654
Abstract:
Abstract This research tries to establish to what extent three popular algorithmic systems for trading financial assets: the relative strength index, the moving average convergence diversion (MACD) and the pivot reversal (PR), are suitable for Bitcoin trading. Using data about daily Bitcoin prices from the beginning of April 2013 until the end of October 2018, we explored these strategies through particle swarm optimization. Our results demonstrate that the relative strength index produced poorer results than the buy and hold strategy. In contrast, the MACD and PR strategies dramatically outperformed the buy and hold strategy. However, our optimizing process produced even better results.
Keywords: Algorithmic trading; Oscillators; Trading strategies; Optimizations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-020-09972-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:57:y:2021:i:2:d:10.1007_s10614-020-09972-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-020-09972-6
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().