Microconsistency in Simple Empirical Agent-Based Financial Models
Blake LeBaron ()
Additional contact information
Blake LeBaron: Brandeis University
Computational Economics, 2021, vol. 58, issue 1, No 5, 83-101
Abstract:
Abstract Models with small numbers of agents have recently been simplified for direct empirical estimation. Parameters are estimated at the macro level to get a best fit to the data. However, little analysis is done at the micro level to examine the choices made by agents for forecasting rules. This paper explores one of these recent models from the standpoint of micro agent behavior. It is shown that at the fitted forecasting rules, agents would prefer deviating to other nearby rules. The simple two type model is then compared with several multi-type models allowing for agents to use a broader set of rules. This can impact the dynamics of the generated time series, but it also may not if one takes the parameter estimates of the original model as an exogenous restriction on a reasonable support for the forecasting rules. This result emphasizes that these models may be imposing some hidden micro assumptions about agent behavior.
Keywords: Learning; Heterogeneous agent models; Asset pricing; Financial time series; Adaptive behavior (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-019-09917-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:58:y:2021:i:1:d:10.1007_s10614-019-09917-8
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-019-09917-8
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().