A Guide on Solving Non-convex Consumption-Saving Models
Jeppe Druedahl ()
Additional contact information
Jeppe Druedahl: University of Copenhagen
Computational Economics, 2021, vol. 58, issue 3, No 8, 747-775
Abstract:
Abstract Consumption-saving models with adjustment costs or discrete choices are typically hard to solve numerically due to the presence of non-convexities. This paper provides a number of tools to speed up the solution of such models. Firstly, I use that many consumption models have a nesting structure implying that the continuation value can be efficiently pre-computed and the consumption choice solved separately before the remaining choices. Secondly, I use that an endogenous grid method extended with an upper envelope step can be used to solve efficiently for the consumption choice. Thirdly, I use that the required pre-computations can be optimized by a novel loop reordering when interpolating the next-period value function. As an illustrative example, I solve a model with non-durable consumption and durable consumption subject to adjustment costs. Combining the provided tools, the model is solved almost 50 times faster than with standard value function iteration for a given level of accuracy. Software is provided in both Python and C++.
Keywords: Endogenous grid method; Post-decision states; Stochastic dynamic programming; Continuous and discrete choices; Occasionally binding constraints (search for similar items in EconPapers)
JEL-codes: C6 D91 E21 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-020-10045-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10045-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-020-10045-x
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().