Coalition Feature Interpretation and Attribution in Algorithmic Trading Models
James V. Hansen ()
Additional contact information
James V. Hansen: Brigham Young University
Computational Economics, 2021, vol. 58, issue 3, No 12, 849-866
Abstract:
Abstract The ability to correctly interpret a prediction model’s output is critically important in many problem spheres. Accurate interpretation generates user trust in the model, provides insight into how a model may be improved, and supports understanding of the process being modeled. Absence of this capability has constrained algorithmic trading from making use of more powerful predictive models, such as XGBoost and Random Forests. Recently, the adaptation of coalitional game theory has led to the development of consistent methods of determining feature importance for these models (SHAP).This study designs and tests a novel method of integrating the capabilities of SHAP into predictive models for algorithmic trading.
Keywords: SHAP; Feature importance; Algorithmic trading; Back-testing; Portfolio optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-020-10053-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10053-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-020-10053-x
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().