A New Dynamic Mixture Copula Mechanism to Examine the Nonlinear and Asymmetric Tail Dependence Between Stock and Exchange Rate Returns
Kuang-Liang Chang ()
Additional contact information
Kuang-Liang Chang: National Chiayi University
Computational Economics, 2021, vol. 58, issue 4, No 2, 965-999
Abstract:
Abstract This paper develops a new time-varying mixture copula, in which the dynamic weights of four distinct copulas are determined by a two-stratum process, to investigate the magnitude of tail dependence in four independent quadrants. In the two-stratum process, the weight of each copula is determined firstly by the relative importance of positive and negative dependence structures, and then by its own past values and adjustment processes. The weighting mechanism is time-varying in each stratum. This new specification is applied to analyze the asymmetric tail dependencies between the stock and exchange rate markets. Empirical results show four interesting findings. First, the quasi-maximum likelihood estimation (QMLE) has a better fitting ability than does the inference function for margins. The relative efficiency of the QMLE is irrespective of marginal specifications. Second, the goodness-of-fit tests of the new time-varying mixture copula are crucially affected by the marginal specifications. Third, estimation methods impact mixture weights. Four distinct tail dependencies are observed, revealing the importance of considering all four tails concurrently, and not just parts of the four tails. Fourth, the asymmetric positive and negative dependencies are significant. Each country shows a similar pattern of asymmetric negative dependence, but a different pattern of asymmetric positive dependence. These empirical findings provide important portfolio allocation implications.
Keywords: Stock market; Exchange rate; Asymmetric dependence; Mixture copula (search for similar items in EconPapers)
JEL-codes: C32 C51 F31 G10 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-020-09981-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:58:y:2021:i:4:d:10.1007_s10614-020-09981-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-020-09981-5
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().