EconPapers    
Economics at your fingertips  
 

Examining Inferences from Neural Network Estimators of Binary Choice Processes: Marginal Effects, and Willingness-to-Pay

Steven M. Ramsey () and Jason Bergtold ()
Additional contact information
Steven M. Ramsey: Economic Research Service

Computational Economics, 2021, vol. 58, issue 4, No 9, 1137-1165

Abstract: Abstract To satisfy the utility maximization hypothesis in binary choice modeling, logit and probit models must make a priori assumptions regarding the underlying functional form of a representative utility function. Such theoretical restrictions may leave the postulated estimable model statistically misspecified. This may lead to significant bias in substantive inferences, such as willingness-to-pay (or accept) measures, in environmental, natural resource and applied economic studies. Feed-forward back-propagation artificial neural networks (FFBANN) provide a potentially powerful semi-nonparametric method to avoid potential misspecifications and provide more valid inference. This paper shows that a single-hidden layer FFBANN can be interpreted as a logistic regression with a flexible index function and can be subsequently used for statistical inference purposes, such as estimation of marginal effects and willingness-to-pay measures. To the authors’ knowledge, the derivation and estimation of marginal effects and other substantive measures using neural networks are not available in the economics literature and is thus a novel contribution. An empirical application is conducted using FFBANNs to demonstrate estimation of marginal effects and willingness-to-pay in a contingent valuation and stated choice experimental framework. We find that FFBANNs can replicate results from binary choice models commonly used in the applied economics literature and can improve on substantive inferences derived from these models.

Keywords: Discrete choice; Inference; Machine learning; Marginal effects; Neural network; Willingness-to-pay (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://link.springer.com/10.1007/s10614-020-09998-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:58:y:2021:i:4:d:10.1007_s10614-020-09998-w

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-020-09998-w

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2022-08-18
Handle: RePEc:kap:compec:v:58:y:2021:i:4:d:10.1007_s10614-020-09998-w