Determining the Flat Sales Prices by Flat Characteristics Using Bayesian Network Models
Volkan Sevinç ()
Additional contact information
Volkan Sevinç: Muğla Sıtkı Koçman University
Computational Economics, 2022, vol. 59, issue 2, No 5, 549-577
Abstract:
Abstract There are various factors affecting flat sales prices. Various characteristics of a flat play an important role in determining its sales price. In this study, a machine learning based Bayesian network was built by a restrictive structural learning algorithm using the data collected from 24 randomly selected cities in Turkey. The data consist of the sales prices and various characteristics of a flat such as number of bedrooms, building age, availability of balcony, net area, heating type, mortgageability, number of bathrooms, seller type, presence in a housing estate area and floor location. After the model validity check, a sensitivity analysis was performed for the estimated Bayesian network model and related results were provided. Some of these results indicate that sales prices of flats mostly change depending on the number of bathrooms available. Additionally, number of bedrooms, net area and floor location are also determinative about the sales prices. The lack of significant difference among the sales prices of flats that are sold by construction companies, housing estate agents or property owners is another result obtained.
Keywords: Flat sales prices; Real estate sector; Residence sale; Bayesian networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-021-10099-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10099-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-021-10099-5
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().