A Neural Network Approach to Value R&D Compound American Exchange Option
Giovanni Villani ()
Additional contact information
Giovanni Villani: University of Bari
Computational Economics, 2022, vol. 60, issue 1, No 12, 305-324
Abstract:
Abstract In this paper we show as the neural network methodology, coupled with the Least Squares Monte Carlo approach, can be very helpful in valuing R&D investment opportunities. As it is well known, R&D projects are made in a phased manner, with the commencement of subsequent phase being dependent on the successful completion of the preceding phase. This is known as a sequential investment and therefore R&D projects can be considered as compound options. In addition, R&D investments often involve considerable cost uncertainty so that they can be viewed as an exchange option, i.e. a swap of an uncertain investment cost for an uncertain gross project value. Finally, the production investment can be realized at any time before the maturity date, after that the effects of R&D disappear. Consequently, an R&D project can be considered as a compound American exchange option. In this context, the Least Squares Monte Carlo method is a powerful and flexible tool for capital budgeting decisions and for valuing American-type options. But, using the simulated values as “targets”, the implementation of a neural network allows to extend the results for any R&D valuation and to abate the waiting time of Least Squares Monte Carlo simulation.
Keywords: Monte Carlo simulation; Neural network; Real options; R&D investments (search for similar items in EconPapers)
JEL-codes: C15 C45 G13 O32 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-021-10150-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10150-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-021-10150-5
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().