EconPapers    
Economics at your fingertips  
 

Modelling Sovereign Credit Ratings: Evaluating the Accuracy and Driving Factors using Machine Learning Techniques

Bart H. L. Overes and Michel Wel ()
Additional contact information
Bart H. L. Overes: Erasmus Universiteit Rotterdam
Michel Wel: Erasmus Universiteit Rotterdam

Computational Economics, 2023, vol. 61, issue 3, No 17, 1273-1303

Abstract: Abstract Sovereign credit ratings summarize the creditworthiness of countries. These ratings have a large influence on the economy and the yields at which governments can issue new debt. This paper investigates the use of a multilayer perceptron (MLP), classification and regression trees (CART), support vector machines (SVM), Naïve Bayes (NB), and an ordered logit (OL) model for the prediction of sovereign credit ratings. We show that MLP is best suited for predicting sovereign credit ratings, with a random cross-validated accuracy of 68%, followed by CART (59%), SVM (41%), NB (38%), and OL (33%). Investigation of the determining factors shows that there is some heterogeneity in the important variables across the models. However, the two models with the highest out-of-sample predictive accuracy, MLP and CART, show a lot of similarities in the influential variables, with regulatory quality, and GDP per capita as common important variables. Consistent with economic theory, a higher regulatory quality and/or GDP per capita are associated with a higher credit rating.

Keywords: Sovereign credit ratings; Machine learning; Determining factors; Ordered logit (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10614-022-10245-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:61:y:2023:i:3:d:10.1007_s10614-022-10245-7

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-022-10245-7

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:61:y:2023:i:3:d:10.1007_s10614-022-10245-7