Predict Stock Prices Using Supervised Learning Algorithms and Particle Swarm Optimization Algorithm
Mohammad Javad Bazrkar () and
Soodeh Hosseini ()
Additional contact information
Mohammad Javad Bazrkar: Shahid Bahonar University of Kerman
Soodeh Hosseini: Shahid Bahonar University of Kerman
Computational Economics, 2023, vol. 62, issue 1, No 7, 165-186
Abstract:
Abstract Forecasting the stock market has always been one of the challenges for stock market participants to make more profit. Among the problems of stock price forecasting, we can mention its dynamic nature, complexity and its dependence on factors such as the governing system of countries, emotions, economic conditions, inflation, and so on. In recent years, many studies have been conducted to predict the capital stock market using traditional techniques, machine learning algorithms and deep learning. The lower our forecast stock error, the More we can reduce investment risk and increase profitability. In this paper, we present a machine learning (ML) approach called support vector machine (SVM) that can be taught using existing data. SVM extracts knowledge between data and ultimately uses this knowledge to predict new stock data. We have also aimed to select the best SVM method parameters using the particle swarm optimization (PSO) algorithm to prevent over-fitting and improve forecast accuracy. Finally, we compare our proposed method (SVM-PSO) with several other methods, including support vector machine, artificial neural network (ANN) and LSTM. The results show that the proposed algorithm works better than other methods and in all cases, its forecast accuracy is above 90%.
Keywords: Stock market; Machine learning; Prediction; Support vector machine; Particle swarm optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-022-10273-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10273-3
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-022-10273-3
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().