A Deep Learning Based Numerical PDE Method for Option Pricing
Xiang Wang (),
Jessica Li () and
Jichun Li ()
Additional contact information
Xiang Wang: Nanchang University
Jessica Li: Brown University
Jichun Li: University of Nevada
Computational Economics, 2023, vol. 62, issue 1, No 6, 149-164
Abstract:
Abstract Proper pricing of options in the financial derivative market is crucial. For many options, it is often impossible to obtain analytical solutions to the Black–Scholes (BS) equation. Hence an accurate and fast numerical method is very beneficial for option pricing. In this paper, we use the Physics-Informed Neural Networks (PINNs) method recently developed by Raissi et al. (J Comput Phys 378:686–707, 2019) to solve the BS equation. Many experiments have been carried out for solving various option pricing models. Compared with traditional numerical methods, the PINNs based method is simple in implementation, but with comparable accuracy and computational speed, which illustrates a promising potential of deep neural networks for solving more complicated BS equations.
Keywords: Option pricing; Black–Scholes equation; Deep learning; Neural networks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10614-022-10279-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10279-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-022-10279-x
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().