A Novel Prediction Model: ELM-ABC for Annual GDP in the Case of SCO Countries
Xiaohan Xu (),
Roy Anthony Rogers () and
Mario Ruiz Estrada
Additional contact information
Xiaohan Xu: University of Malaya
Roy Anthony Rogers: University of Malaya
Computational Economics, 2023, vol. 62, issue 4, No 8, 1545-1566
Abstract:
Abstract With the development of economic and technologies, the trend of annual Gross Domestic Product (GDP) and carbon dioxide (CO2) emission changes with time passes. The relationship between economic growth and carbon dioxide emissions is considered as one of the most important empirical relationships. In this study, we focus on the member of Shanghai Cooperation Organization, including China, Russia, India, and Pakistan and collect CO2 emission and annual GDP from 1969 to 2014. The statistical methods and tests are used to find the relationship between annual GDP and CO2 emission in these countries. Based on relationship between annual and CO2 emission, a novel multi-step prediction algorithm called Extreme Learning Machine with Artificial Bee Colony (ELM-ABC) is proposed for forecasting annual GDP based on CO2 emission and historical GDP features. According to the experimental results, it proved that the proposed model had a super forecasting ability in GDP prediction and it could predict ten-year future annual GDP for the corresponding countries. Moreover, the forecasting results showed that the annual GDP of China and Pakistan will continue to grow but growth will slow after 2025. The annual GDP in India will exhibit unstable growth. The trend of Russia will follow the pattern between 2010 and 2016.
Keywords: SCO; GDP; CO2 emissions; Extreme learning machine; Time series prediction; Optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-022-10311-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10311-0
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-022-10311-0
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().