EconPapers    
Economics at your fingertips  
 

Comparison of Value at Risk (VaR) Multivariate Forecast Models

Fernanda Maria Müller () and Marcelo Righi ()
Additional contact information
Fernanda Maria Müller: Business School, Federal University of Rio Grande do Sul

Computational Economics, 2024, vol. 63, issue 1, No 4, 75-110

Abstract: Abstract We investigate the performance of VaR (Value at Risk) forecasts, considering different multivariate models: HS (Historical Simulation), DCC-GARCH (Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity) with normal and Student’s t distribution, GO-GARCH (Generalized Orthogonal-Generalized Autoregressive Conditional Heteroskedasticity), and copulas Vine (C-Vine, D-Vine, and R-Vine). For copula models, we consider that marginal distribution follow normal, Student’s t and skewed Student’s t distribution. We assessed the performance of the models using stocks belonging to the Ibovespa index during the period from January 2012 to April 2022. We build portfolios with 6 and 12 stocks considering two strategies to form the portfolio weights. We use a rolling estimation window of 500 and 1000 observations and 1%, 2.5%, and 5% as significance levels for the risk estimation. To evaluate the quality of the risk forecasts, we compute the realized loss and cost. Our results show that the performance of the models is sensitive to the use of different significance levels, rolling windows, and strategies to determine portfolio weights. Furthermore, we find that the model that presents the best trade-off between the costs from risk overestimation and underestimation does not coincide with the model suggested by the realized loss.

Keywords: Risk forecasting; Value at Risk (VaR); Copulas; Multivariate GARCH models (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-022-10330-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10330-x

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-022-10330-x

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10330-x