An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance
Suriyan Jomthanachai,
Wai Peng Wong () and
Khai Wah Khaw
Additional contact information
Suriyan Jomthanachai: Prince of Songkla University (PSU)
Wai Peng Wong: Monash University
Khai Wah Khaw: Universiti Sains Malaysia
Computational Economics, 2024, vol. 63, issue 2, No 11, 792 pages
Abstract:
Abstract In this work, a machine learning application was constructed to predict the logistics performance index based on economic attributes. The prediction procedure employs both linear and non-linear machine learning algorithms. The macroeconomic panel dataset is used in this investigation. Furthermore, it was combined with the microeconomic panel dataset obtained through the data envelopment analysis method for evaluating financial efficiency. The procedure was implemented in six ASEAN member countries. The non-linear algorithm of an artificial neural network performed best on the complex pattern of a collective instance of these six countries, followed by the penalized linear of the Ridge regression method. Due to the limited amount of training data for each country, the artificial neural network prediction procedure is only applicable to the datasets of Singapore, Malaysia, and the Philippines. Ridge regression fits the Indonesia, Thailand and Vietnam datasets. The results provide precise trend forecasting. Macroeconomic factors are driving up the logistics performance index in Vietnam in 2020. Malaysia logistics performance is influenced by the logistics business's financial efficiency. The results at the country level can be used to track, improve, and reform the country's short-term logistics and supply chain policies. This can bring significant gains in national logistics and supply chain capabilities, as well as support for global trade collaboration, all for the long-term development of the region.
Keywords: Machine learning; Artificial neural network; Linear regression; Prediction; Data envelopment analysis; Logistics performance index (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10358-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:63:y:2024:i:2:d:10.1007_s10614-023-10358-7
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-023-10358-7
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().