EconPapers    
Economics at your fingertips  
 

Microfounded Tax Revenue Forecast Model with Heterogeneous Population and Genetic Algorithm Approach

Ariel Alexi (), Teddy Lazebnik and Labib Shami
Additional contact information
Ariel Alexi: Bar-Ilan University
Teddy Lazebnik: University College London
Labib Shami: Western Galilee College

Computational Economics, 2024, vol. 63, issue 5, No 2, 1705-1734

Abstract: Abstract The ability of governments to accurately forecast tax revenues is essential for the successful implementation of fiscal programs. However, forecasting state government tax revenues using only aggregate economic variables is subject to Lucas’s critique, which is left not fully answered as classical methods do not consider the complex feedback dynamics between heterogeneous consumers, businesses, and the government. In this study we present an agent-based model with a heterogeneous population and genetic algorithm-based decision-making to model and simulate an economy with taxation policy dynamics. The model focuses on assessing state tax revenues obtained from regions or cities within countries while introducing consumers and businesses, each with unique attributes and a decision-making mechanism driven by an adaptive genetic algorithm. We demonstrate the efficacy of the proposed method on a small village, resulting in a mean relative error of $$5.44\% \pm 2.45\%$$ 5.44 % ± 2.45 % from the recorded taxes over 4 years and $$4.08\% \pm 1.21$$ 4.08 % ± 1.21 for the following year’s assessment. Moreover, we demonstrate the model’s ability to evaluate the effect of different taxation policies on economic activity and tax revenues.

Keywords: Tax revenue forecast; Multi agent multi objective; Genetic algorithm; Economic simulator; Agent based simulation. (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10379-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10379-2

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-023-10379-2

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10379-2