Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting
Satya Verma (),
Satya Prakash Sahu () and
Tirath Prasad Sahu ()
Additional contact information
Satya Verma: National Institute of Technology
Satya Prakash Sahu: National Institute of Technology
Tirath Prasad Sahu: National Institute of Technology
Computational Economics, 2024, vol. 63, issue 6, No 4, 2193-2224
Abstract:
Abstract Stock market forecasting is done by analyzing multivariate financial time series generated through technical analysis. However, high-dimensional data deteriorates the prediction performance due to irrelevant features that lead to higher computational costs. Feature selection is used to reduce data dimensionality and select the most informative features. A two-stage hybrid feature selection method is proposed to improve the performance of the forecasting model. In the first stage, a way to aggregate multiple filter methods is introduced as Multi-Filter Feature Selection (MFFS). Three filter methods are used for MFFS to scan the dataset from different aspects. In the second stage, Levy’s Flight-based Chicken Swarm Optimization (LFCSO) is proposed. Levy’s flight is introduced to update the position of Chickens to handle local optima and early convergence. The proposed MFFS reduces the computational cost by filtering the ambiguous features with reduced computational load for the second stage. Deep learning models are used for forecasting using a reduced feature set. Extensive experiments have been performed with three stock indices. The proposed model is assessed against the feature subsets obtained under different scenarios. Performance validation is done by comparing the proposed model and the existing work based on various performance metrics. The experimental result shows that the proposed model outperforms the existing models.
Keywords: Stock market forecasting; Multivariate financial time series; Multi-filter feature selection (MFFS); Chicken Swarm optimization (CSO); Levy’s flight; Deep learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10400-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:63:y:2024:i:6:d:10.1007_s10614-023-10400-8
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-023-10400-8
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().